If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2-9q=5
We move all terms to the left:
2q^2-9q-(5)=0
a = 2; b = -9; c = -5;
Δ = b2-4ac
Δ = -92-4·2·(-5)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-11}{2*2}=\frac{-2}{4} =-1/2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+11}{2*2}=\frac{20}{4} =5 $
| -2/3=w-7.3 | | 7x/2=9/4+13x/5 | | z+45+z+74+78+55=180 | | 40x+(8x*1.5)*52=50000 | | -2x+4=3x+4 | | -5x=9.5 | | 7+2t=1 | | s-12=-13 | | -1=-5(8-x) | | 3x+4x-16=-4+2x+3 | | 3n+4n-2=(+ | | -21/2=1/4x-2x | | v4+ 9=11 | | 6x−14+2x+18+2x+8=180 | | 40x+4(1.5x)=961.6*52 | | X;-10+x+4-5=7x-5 | | 12.512−b=12.5 | | 8a+7+2=9 | | (6x−14)+(2x+16)+(2x+8)=180 | | 68=4(3x+5 | | a-2=6a-4 | | -9-2j=15 | | -7=-2b-4-1 | | ?x6=126 | | m=23=-12 | | 6x-18-1.5=6 | | (-8-3k)12=11 | | N;n-3n=14-4n | | 50-5n=0 | | x+110+140=180 | | 50/6=p/18 | | -3=a-1-1 |